致电池坏死......”
“检测结果呢?我看看。”
对于于振弄出来的人工sei薄膜,徐川很感兴趣。
虽然他对于锂电池并没有什么太多的研究,不过可以从材料学和数学的角度来对锂电池中的各种问题进行分析。
这是绝大部分材料学家都做不到的事情,因为他们没有那么深厚的数学功底。
“稍等,我这就打印一份过来。”
樊鹏越应了一声,匆匆离去,不过没一会,他就带着一份文件重新赶了回来。
徐川接过尚有余温的打印纸,闻着上面的墨香翻阅了起来。
从上面记录的数据,从测试结果来看,从某种意义上来说,这种人工sei薄膜的确算是解决了锂枝晶问题。
但析锂问题与锂聚集问题它依旧未能解决。
所谓的析锂,和锂电池运行有关。
锂离子电池在充电时,li+会从正极脱嵌并嵌入负;
但是当一些异常情况出现,比如负极嵌锂空间不足、li+嵌入负极阻力太大、li+过快的从正极脱嵌但无法等量的嵌入负极等异常发生时,li+就无法嵌入负极了。
这时候的li+只能在负极表面得电子,从而形成银白色的金属锂单质,这也就是常说的析锂。
锂枝晶其实就是析锂的一种。
而当过多的锂离子聚集在负极形成析锂时,不仅使电池性能下降,循环寿命大幅缩短,还限制了电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果。
此外还会造成的电解液中的锂离子过度消耗,从而造成库伦效率越来越低。
用通俗的话来说,就是锂离子电池容量是呈指数衰减的。
如果电池的每圈的库伦效率是99%,那么循环100圈后,它的容量保持率就是36.6%。
也就是说100ah的电池在这种情况下循环100圈只剩下36.6ah的容量。
而他手中的这份资料,显示出的析锂效应尤为严重。
因此进而造成了组装的电池库伦效率仅有99.91%左右。
这个数值听起来已经很不错了。但实际上并不高。
拿最出名的某果手机的电池举例,大部分的正常的电池在正常条件下运行,当充电周期数达到500时,电池最高可保持初始容量的80%。
也就是说电池循环500圈,容量保持率在80%,换算成库伦
本章未完,请点击下一页继续阅读!