论是拍脑袋想出来的点子、还是灵光一闪出现的思路,这些公司其实早在二三十年前就预研过了。
然后会因为这种想法,或这个材料某个无法弥补的缺陷,亦或者过高的研究难度而果断的放弃了。
对于芯片这种东西来说,其他性能说的再天花乱坠,一个关键指标不行就直接毙掉了。
比如锗,就是例子。
锗晶体存在着自应变,易于热漂移和冷漂移,使芯片的稳定性变差。
这一点,就足够使得锗在硅出现后,被工业界直接大规模的放弃了。
硅基芯片发展到现在的这个阶段,是工业界几十年以来无数次尝试研究妥协出来的最优解。
至少是现阶段科技发展中的最优解。
而在这方面,碳整体的性能和评价,的确是追不上硅的。
当然,这并不代表着碳没有前途。
相反,碳基芯片的前景远比硅基芯片更大。
更高的集成度、更快的运算速度,不受量子效应的影响能耗低、散热低、高电子迁移率比硅基芯片更适合高频和超频运转等等。
这些都是碳基芯片的优点。
但它的制造难度大啊。
相对比硅基芯片来说,碳基芯片的制造难度在目前的科技水平下,大的可不是一倍两倍。
无论是碳纳米管的整齐稳定排序、还是碳半导体纯度的控制、亦或者是碳纳米管的提纯,都是极大的难题。
所以相对比之下,技术要求更低的硅基芯片,无疑是当时研发主流的选择。
当然,另一方面路径依赖也是个很重要的原因。
这几十年来半导体技术,特别是集成电路制造技术都是基于硅基产品进行的。
在这期间,整个世界已经投入了,并且还正在投入无数人力和资金进行技术提升。
这种时候换赛道,除非有数十倍的优势,否则没人会愿意的。
而碳基芯片虽然的确更加优秀,但老实说要达到数十倍硅基芯片的优势,并没有。
所以碳在过去的时代中,在芯片领域属于被抛弃的材料。
只不过这种抛弃和其他材料,如锗晶体一类材料不同。
锗晶体这些属于具有缺陷的同时性能比不上硅被放弃的。
而碳晶体管则属于研发技术难度过高而被放弃的。
实验室中,讨论完场发射扫描电子显微镜的测试实验数据后,徐川带着场发射扫描电
本章未完,请点击下一页继续阅读!